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Abstract. This paper analyzes the accuracy of the shift-invert Lanczos iteration for computing
the eigenpairs of the symmetric positive definite generalized eigenvalue problem that arises from a
conforming finite element method. We provide bounds for the uniform (independent of the mesh
size h) accuracy of the eigenpairs produced by shift-invert Lanczos given a residual reduction by
exploiting the connection with the finite element method. We also discuss the implications of our
analysis for practical shift-invert Lanczos iterations.
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1. Introduction. A popular approach for the solution of the generalized sym-
metric positive definite eigenvalue problem

Au = Muλ,
(
A,M ∈ Rn×n

)
, (1.1)

is the shift-invert Lanczos method [3, 4, 5]. The matrices A and M are symmetric
and symmetric positive definite, respectively. This technique is used to approximate
the eigenvalues in a given interval, for instance, the smallest eigenvalues.

Once approximations to the eigenvalues (and eigenvectors) are computed, a pos-
teriori error bounds can assess the accuracy of the results. Ericsson and Ruhe [3] pre-
sented the first bounds for (1.1) when computing an M-orthonormal Lanczos basis.
In this paper, we review their results and extend them to an (A− σM)-orthonormal
Lanczos basis (where σ is no larger than the smallest eigenvalue of (A, M)).

The motivation for using the (A − σM)-inner product comes from the work of
structural analysts who compute a large set of the smallest eigenpairs with one shift
σ below the spectrum of (A, M). Indeed, when performing a series of factorizations
becomes prohibitively expensive, preconditioned iterative methods replace the direct
linear solves. These iterative methods perform at their best when A−σM is positive
definite. Furthermore, when A is ill-conditioned or singular and M is ill-conditioned,
there exists, in most cases, a shift σ so that A − σM is positive definite and better
conditioned. This choice of σ helps not only the preconditioned iterative method but
also in maintaining the orthonormality of Lanczos vectors. Our bounds indicate as
well the attainable accuracy to eigenpairs of (1.1), when using a single shift.

Finally, when the eigenvalue problem (1.1) arises from the finite element dis-
cretization of elliptic self-adjoint differential eigenvalue problem, invariance of the
bounds with respect to the mesh size is an important property. Our analysis stud-
ies the bounds with respect to the mesh size and also has implications on practical
shift-invert Lanczos iterations.

Our paper is organized as follows. Section 2 reviews the shift-invert Lanczos
decomposition and introduces our notation. Section 3 reviews useful accuracy results.
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Sections 4 and 5 provide accuracy results given a residual reduction achieved by
the shift-invert Lanczos iteration. Finally, section 6 comments on the results of our
analysis for practical Lanczos iterations.

2. Shift-invert Lanczos decomposition. The eigenvalue problem (1.1) has a
set of M-orthonormal eigenvectors uj and corresponding eigenvalues λj . We assume
that the eigenvalues (and eigenvectors) are ordered in ascending order.

In order to use the Lanczos iteration to compute eigenpairs of (1.1), a spectral
transformation is employed. If σ ∈ R, then the standard eigenvalue problem

(A− σM)−1Mu = uν,

(
ν =

1
λ− σ

)
, (2.1)

results by subtracting σM from both sides of (1.1) followed by “cross-multiplication”.
This standard eigenvalue problem is no longer symmetric. However, a careful choice
of inner product renders the operator (A− σM)−1M symmetric. For instance, when
the inner product is induced by the matrix H, selecting H equal to M or A − σM
(σ < λ1) results in a H-symmetric matrix (A− σM)−1M.

Suppose that

A−1
σ MVj = VjTj + fjeT

j , (Aσ = A− σM), (2.2)

is a Lanczos reduction of length j where ej is the jth canonical basis vector, we have

VT
j HA−1

σ MVj = Tj (2.3a)

VT
j HVj = Ij (2.3b)

VT
j Hfj = 0 (2.3c)

where Tj is a symmetric tridiagonal matrix. The j columns of Vj form a basis
H-orthonormal for the Krylov subspace

Kj(A−1
σ M,v1) = Span{v1,A−1

σ Mv1, · · · , (A−1
σ M)j−1v1}. (2.4)

If we denote

Tj =


α1 β2 · · · 0
β2 α2 · · · 0
...

. . . βj

0 · · · βj αj

 ,

then the familiar Lanczos three-term recurrence is recovered by equating the jth
column of (2.2) to obtain

fj = A−1
σ Mvj − vjαj − vj−1βj−1.

Using H-orthonormality, we have

αj = vT
j HA−1

σ Mvj , (2.5a)

βj+1 = ‖fj‖H, (2.5b)

and the new direction vj+1 is equal to fj/βj+1.
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The Lanczos reduction (2.2) provides two choices of approximating eigenvectors.
If Tjs = sθ where s ∈ Rj , θ ∈ R, and ‖s‖ = 1, then we can postmultiply (2.2) by s to
obtain

A−1
σ MVjs = Vjsθ + fjωj (2.6a)

= (Vjs + fj
ωj

θ
)θ, (2.6b)

where ωj = eT
j s. We define the Ritz vector as x = Vjs and the purified vector as

p = x+fjωj/θ. The purified vector was introduced in [3, 6] as a simple postprocessing
step to recover the vector that results from a step of inverse iteration on the Ritz
vector.

For a desired tolerance ε, a convergence criterion often used in practice [3, 5] is

‖fj‖H |ωj | ≤ ε |θ| . (2.7)

Note that by (2.5b), the convergence criterion is available as a by-product of the
Lanczos reduction.

In the remainder of this report, we omit the index j when the context is clear and
we always assume that Aσ is invertible. We also emphasize that σ is smaller than λ1

only when the inner product is induced by H = Aσ. Finally, we caution the reader
that a distinction is drawn between the inner product used for orthogonality of the
Lanczos vectors and the inner product used for the error bounds.

3. Useful general results. This section reviews a standard accuracy result
that will prove useful for our analysis. We also introduce a useful lemma. This
section concludes with some background information on the approximation of the
finite element method to eigenvalues of the continuous problem that produced (1.1).

We recall the following result proved in Parlett [7, § 11.7]. The result provides
bounds on the errors when approximating an eigenpair of (1.1) in terms of residuals.

Theorem 3.1. Let Â ∈ Rn×n be a symmetric matrix, ŷ(6= 0) ∈ Rn with Rayleigh
quotient

θ̂ =
ŷT Âŷ
ŷT ŷ

and residual r̂ = Âŷ − θ̂ŷ. If α̂ is the eigenvalue of Â closest to θ̂ where Âẑ = ẑα̂
and ‖ẑ‖ = 1, then

0 ≤
∣∣∣θ̂ − α̂

∣∣∣ ≤ min

 ‖r̂‖
‖ŷ‖

,
1

min
λ̂i 6=α̂

∣∣∣λ̂i − θ̂
∣∣∣ ‖r̂‖

2

‖ŷ‖2

 (3.1)

and

1

λ̂n − λ̂1

‖r̂‖
‖ŷ‖

≤ |sin∠(ŷ, ẑ)| ≤ 1

min
λ̂i 6=α̂

∣∣∣λ̂i − θ̂
∣∣∣ ‖r̂‖‖ŷ‖

. (3.2)

λ̂n and λ̂1 are, respectively, the largest and smallest eigenvalue of Â.
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The following lemma relates the angle of a vector with an eigenvector using the
M- and Aσ-inner products. We are not aware whether this result has appeared in
the open literature.

Lemma 3.2. Let σ < λ1, y(6= 0) ∈ Rn and

ρ =
yT Ay
yT My

.

If Au = Muλ, then

sin2 ∠M(y,u) =
λ− ρ

λ− σ
+

ρ− σ

λ− σ
sin2 ∠Aσ (y,u). (3.3)

Proof. The hypothesis implies yT Aσu = yT Mu(λ−σ), uT Aσu = uT Mu(λ−σ),
and yT Aσy = yT My(ρ− σ). Therefore we have

yT Mu
‖y‖M‖u‖M

=
√

ρ− σ

λ− σ

yT Aσu
‖y‖Aσ‖u‖Aσ

.

The result follows from the identity cos2 φ + sin2 φ = 1.
As we assume that the problem (1.1) arises from the discretization of a partial

differential equation with a conforming finite element method, we could write (1.1) as

Ahuh = Mhuhλh, (3.4)

where h is the characteristic mesh size. Our error bounds need to be uniform with
respect to this mesh size. Theorem 3.1 uses the largest and smallest eigenvalues of
Â. So, for the sake of completeness, we recall a standard result from finite element
theory [2]:

lim
h→0

λh
1 = λ?

1, lim
h→0

λh
n = +∞, (3.5)

where λ?
1 is the smallest eigenvalue of the differential eigenvalue problem. Note that

n → +∞ as h → 0. In the remainder of this report, we omit the subscript h.

4. Study of the Ritz vector. Using (2.6a), we approximate an eigenvector and
corresponding eigenvalue by

σ +
1
θ

= σ +
xT Hx

xT HA−1
σ Mx

. (4.1)

We remark that when H is equal to Aσ(σ < λ1), the Rayleigh quotient of x for
the pencil (A,M) is σ + θ−1. On the other hand, when the Lanczos vectors are M-
orthonormal, σ + θ−1 is not the Rayleigh quotient of x for the pencil (A,M). The
next result relates the Lanczos vector f with the residual.

Lemma 4.1. If x is the Ritz vector (2.6a) produced by the Lanczos reduction,
then

‖Ax−Mx(θ−1 + σ)‖A−1
σ HA−1

σ

‖x‖H
=
∣∣∣ω
θ

∣∣∣ ‖f‖H. (4.2)
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Proof. The Ritz vector x is H-normalized. Equation (2.6a) implies A−1
σ (Mx −

Aσxθ) = fω so that

A−1
σ (Ax−Mx(θ−1 + σ)) = −f

ω

θ
,

which proves the relation (4.2).
The following result combines (4.2) and Theorem 3.1 to provide bounds on the

accuracy of the Ritz value and vector given by the shift-invert Lanczos reduction (2.2).
Proposition 4.2. Let x be a Ritz vector (2.6a) produced by a shift-invert Lanczos

reduction and

θ =
xT HA−1

σ Mx
xT Hx

.

If λ satisfies ∣∣∣∣ 1
λ− σ

− θ

∣∣∣∣ = min
λi

∣∣∣∣ 1
λi − σ

− θ

∣∣∣∣
and Au = Muλ where ‖u‖H = 1 (σ < λ1 when H = Aσ), then∣∣∣∣λ− σ − θ−1

λ− σ

∣∣∣∣ ≤ ‖f‖H
∣∣∣ω
θ

∣∣∣min
(

1,

∣∣∣∣ λgap − σ

λgap − σ − θ−1

∣∣∣∣ ‖f‖H ∣∣∣ωθ ∣∣∣
)

(4.3)

and∣∣∣∣ (λ+
σ − σ)(λ−σ − σ)

λ+
σ − λ−σ

∣∣∣∣ ‖f‖H |ω| ≤ |sin∠H(x,u)| ≤
∣∣∣∣ λgap − σ

λgap − σ − θ−1

∣∣∣∣ ‖f‖H ∣∣∣ωθ ∣∣∣ (4.4)

where ∣∣∣∣ 1
λgap − σ

− θ

∣∣∣∣ = min
λi 6=λ

∣∣∣∣ 1
λi − σ

− θ

∣∣∣∣
and

(λ−σ , λ+
σ ) =

{
(minλi<σ |λi − σ| ,minσ<λi |λi − σ|) when λ1 < σ < λn,
(λ1, λn) otherwise.

Proof. This result is a reformulation of Theorem 3.1 when Â, ŷ, and r̂ are
respectively equal to H1/2A−1

σ MH−1/2, H1/2x, and θH1/2A−1
σ (Mx(θ−1 +σ)−Ax).

α̂ and λ̂i are equal to 1/(λ− σ) and 1/(λi − σ). The Rayleigh quotient of ŷ coincides
with θ. The bounds (4.3) and (4.4) then follow by using (4.2).

We remark that Proposition 4.2 is only related to the shift-invert Lanczos method
via the relation (4.2) and as soon as the convergence criterion (2.7) is satisfied, we
can introduce the tolerance ε in the upper bounds.

The eigenvalue bound (4.3) shows that when σ is close to λ, a large tolerance
ε can still result in an accurate approximation of the eigenvalue. The bound also
guarantees a relative error on the eigenvalue of the same level as the residual norm
(4.2). Finally, a quadratic convergence is triggered as soon as∣∣∣∣ λgap − σ

λgap − σ − θ−1

∣∣∣∣ ‖f‖H ∣∣∣ωθ ∣∣∣ < 1.
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When approximating many eigenpairs with one shift σ, |θ| becomes smaller and
|λgap − σ| larger. Therefore, the ratio between the sine of the angle and the residual
norm (4.2)∣∣∣∣ (λ+

σ − σ)(λ−σ − σ)
λ+

σ − λ−σ

∣∣∣∣ |θ| ≤ |sin∠H(x,u)|
‖Ax−Mx(θ−1 + σ)‖A−1

σ HA−1
σ

≤
∣∣∣∣ λgap − σ

λgap − σ − θ−1

∣∣∣∣
belongs to a wider interval.

The discussion at the end of section 3 implies that the sharpness of bounds (4.3)
and (4.4) are invariant with respect to the mesh size. However, when using the M-
inner product, the Rayleigh quotient of the Ritz vector x does not remain bounded
with the mesh size. Indeed, the Lanczos reduction (2.2) implies

Mx = Aσxθ + Aσfω,

which gives

xT Mx = (xT Ax− σxT Mx)θ + (xT Af − σxT Mf)ω,
fT Mx = (fT Ax− σfT Mx)θ + (fT Af − σfT Mf)ω.

(4.5)

Because f is M-orthogonal to the Ritz vector x, we obtain

xT Ax
xT Mx

= σ +
1
θ

+
(

fT Af
fT Mf

− σ

)(
‖f‖M

ω

θ

)2

.

This equality implies that the Rayleigh quotient of x for the pencil (A,M) is bounded
with the mesh size only when the Rayleigh quotient of f for the pencil (A,M) remains
bounded. The following example demonstrates that these Rayleigh quotients can grow
when the mesh is refined.

Consider the (2n− 1)× (2n− 1) tridiagonal matrices

A = 2n


2 −1 · · · 0
−1 2 · · · 0
...

. . . −1
0 · · · −1 2

 , M =
1

12n


4 1 · · · 0
1 4 · · · 0
...

. . . 1
0 · · · 1 4

 ,

that arise from a uniform finite element discretization of the Laplace equation with
homogeneous Dirichlet boundary conditions on the unit interval. A shift-invert Lanc-
zos iteration with an M-inner product is used to approximate the smallest eigenpair.
The starting vector is M-normalized and proportional to en. The Ritz vector x is
obtained as soon as the stopping criterion (2.7) is satisfied with ε = 10−2 . Figure
4.1 demonstrates that the Rayleigh quotient of x for the pencil (A, M) grows as we
refine the mesh. Consequently, the accuracy of the Ritz vector, defined by the Lanczos
reduction with M-inner product, decreases with the mesh size. On the other hand,
using the Aσ-inner product results in a bounded Rayleigh quotient for x, equal to
σ + θ−1.

5. Study of the purified vector. This section studies the case when the eigen-
pair is approximated by the purified vector (2.6b) and the corresponding Rayleigh
quotient. We consider the two cases that arise when the Lanczos vectors are ortho-
normal with respect to the M- and Aσ-inner products.
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Fig. 4.1. Size of the Rayleigh quotient with mesh refinement (ε = 10−2) using an M-
orthonormal shift-invert Lanczos method.

5.1. Lanczos reduction with M-inner product. The following result is a
counterpart of Lemma 4.1.

Lemma 5.1. If p is the purified vector (2.6b) given by the shift-invert Lanczos
reduction (2.2) where the Lanczos vectors are M-orthonormal, then

ρ =
pT Ap
pT Mp

= σ +
1

θ(1 + ‖f‖2M(ω/θ)2)
, (5.1)

‖r‖M−1

‖p‖M
= |ρ− σ| ‖f‖M

∣∣∣ω
θ

∣∣∣ = ‖f‖M
|ω|
θ2

× 1
1 + ‖f‖2M(ω/θ)2

, (5.2)

‖r‖A−1
µ

‖p‖Aµ

=
1√

ρ− µ
‖f‖MA−1

µ M

|ω|
θ2

+O
(
‖f‖2M

(ω

θ

)2
)

, (5.3)

where r = Ap−Mpρ denotes the residual, ‖f‖M |ω/θ| < 1, and µ is smaller than λ1

such that Aµ is positive definite.
Proof. The two results (5.1) and (5.2) are due to Ericsson and Ruhe [3]. The

Lanczos reduction (2.2) implies

r = Ap− (σ +
1
θ
)Mp + (σ +

1
θ
− ρ)Mp = −Mf

ω

θ2
+ (σ +

1
θ
− ρ)Mp.

so that

rT A−1
µ r = fT MA−1

µ Mf
( ω

θ2

)2

− fT MA−1
µ Mp

2γω

θ2
+ pT MA−1

µ Mpγ2,
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where γ = σ − ρ + θ−1. The following relations

pT MA−1
µ Mp ≤ 1

λ1 − µ
pT Mp =

1 + ‖f‖2M(ω/θ)2

λ1 − µ
,

σ +
1
θ
− ρ =

‖f‖2M(ω/θ)2

θ(1 + ‖f‖2M(ω/θ)2)
,

fT MA−1
µ Mp = fT MA−1

µ Mx + fT MA−1
µ Mf

ω

θ
,

MA−1
µ Mx = Mxθ + MA−1

µ Mxθ(µ− σ) + Mfω + MA−1
µ Mfω(µ− σ),

show that

‖r‖A−1
µ

= ‖f‖MA−1
µ M

|ω|
θ2

+O
(
‖f‖2M

(ω

θ

)2
)

.

The result (5.3) now follows because

pT Aµp = (ρ− µ)
(

1 + ‖f‖2M
(ω

θ

)2
)

.

We remark that ρ < σ+1/θ. In general, σ is arbitrary. However, when σ is smaller
than λ1, we can set µ to σ and we have ‖fj‖MA−1

σ M = βj+1
√

αj+1 by (2.5). The
following result combines Lemma 5.1 and Theorem 3.1 to provide accuracy bounds.

Proposition 5.2. Let p be the purified vector (2.6b) given by the shift-invert
Lanczos reduction (2.2) with the M-inner product, ρ its Rayleigh quotient, and r =
Ap−Mpρ. If µ < λ1 and Au = Muλ where λ is the closest eigenvalue to ρ, then∣∣∣∣λ− ρ

ρ

∣∣∣∣ ≤ 1
ρ

‖r‖M−1

‖p‖M
min

1,
1

min
λi 6=λ

|λi − ρ|
‖r‖M−1

‖p‖M

 (5.4a)

∣∣∣∣λ− ρ

λ− µ

∣∣∣∣ ≤ ‖r‖A−1
µ

‖p‖Aµ

min

(
1,

∣∣∣∣λgap − µ

λgap − ρ

∣∣∣∣ ‖r‖A−1
µ

‖p‖Aµ

)
(5.4b)

and

1
λn − λ1

‖r‖M−1

‖p‖M
≤ |sin∠M(p,u)| ≤ 1

min
λi 6=λ

|λi − λ|
‖r‖M−1

‖p‖M
(5.5a)

(λ1 − µ)(λn − µ)
(λn − λ1)(ρ− µ)

‖r‖A−1
µ

‖p‖Aµ

≤
∣∣sin∠Aµ

(p,u)
∣∣ ≤ ∣∣∣∣λgap − µ

λgap − ρ

∣∣∣∣ ‖r‖A−1
µ

‖p‖Aµ

(5.5b)

where λgap satisfies ∣∣∣∣ 1
λgap − µ

− 1
ρ− µ

∣∣∣∣ = min
λi 6=λ

∣∣∣∣ 1
λi − µ

− 1
ρ− µ

∣∣∣∣ .
Proof. This result is a reformulation of Theorem 3.1. For relations (5.4a) and

(5.5a), Â, ŷ, and θ̂ are equal, respectively, to M−1/2AM−1/2, M1/2p, and ρ. To
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prove (5.4b) and (5.5b), they are equal, respectively, to A−1/2
µ MA−1/2

µ , A1/2
µ p, and

1/(ρ− µ).
When the problem (1.1) arises from a finite element method, the bounds (5.4)

and (5.5b) are uniform with the mesh size. However, the discussion at the end of
section 3 implies that the lower bound of (5.5a) is not uniform with the mesh size.

As soon as the convergence criterion (2.7) is satisfied, we can introduce the tol-
erance ε in the bounds of Proposition 5.2. In particular, we can assume

‖r‖M−1

‖p‖M
≈ ε

|θ|
.

So when σ is close to λ, |θ| is large and a large tolerance ε can still result in an
accurate approximation of λ and a small angle ∠M(p,u). On the other hand, when
|θ| is small, the bound (5.4a) guarantees at least a relative error close to ε but the
upper bound of (5.5a) grows.

5.2. Lanczos reduction with Aσ-inner product. The following result is a
counterpart of Lemmas 4.1 and 5.1.

Lemma 5.3. If p is the purified vector (2.6b) given by the Lanczos reduction (2.2)
where the Lanczos vectors are Aσ-orthonormal (σ < λ1), then

ρ =
pT Ap
pT Mp

= σ +
1
θ

1 + ‖f‖2Aσ
(ω/θ)2

1 + 2‖f‖2Aσ
(ω/θ)2 + θ−1‖f‖2M(ω/θ)2

, (5.6)

‖r‖M−1

‖p‖M
= ‖f‖M

|ω|
θ5/2

+O
(
‖f‖2Aσ

(ω

θ

)2
)

, (5.7)

‖r‖A−1
σ

‖p‖Aσ

= ‖f‖MA−1
σ M

|ω|
θ2

+O
(
‖f‖2Aσ

(ω

θ

)2
)

, (5.8)

where r = Ap−Mpρ denotes the residual and ‖f‖Aσ |ω/θ| < 1.
Proof. The definition of Aσ implies that

pT Ap = pT Aσp + σpT Mp,

pT Ap = 1 + ‖f‖2Aσ

(ω

θ

)2

+ σpT Mp,

where we have used (2.6b) and the Aσ-orthogonality between f and the Aσ-normalized
vector x.

The Lanczos reduction (2.2) implies xT Mx = θ and xT Mf = fT Aσfω so that

pT Mp = xT Mx + 2xT Mf
ω

θ
+ fT Mf

(ω

θ

)2

,

pT Mp = θ

[
1 + 2‖f‖2Aσ

(ω

θ

)2

+
1
θ
‖f‖2M

(ω

θ

)2
]

,

and (5.6) is established.
The proofs of (5.7) and (5.8) are similar to that used to establish (5.3). Again,

the Lanczos reduction (2.2) implies

r = −Mf
ω

θ2
+ (σ +

1
θ
− ρ)Mp,
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so that

rT M−1r = fT Mf
( ω

θ2

)2

− fT Mp
2γω

θ2
+ pT Mpγ2,

where γ = σ − ρ + θ−1. The following relations,

pT Mp = θ

[
1 + 2‖f‖2Aσ

(ω

θ

)2

+
1
θ
‖f‖2M

(ω

θ

)2
]

,

‖f‖2M ≤ 1
λ1 − σ

‖f‖2Aσ
,

σ +
1
θ
− ρ = O

(
‖f‖2Aσ

(ω

θ

)2
)

,

fT Mp = fT Mx + fT Mf
ω

θ
= fT Aσfω + fT Mf

ω

θ
,

establish (5.7) and (5.8) follows in a similar fashion.
We remark that ‖f‖M is available as a by-product of the Lanczos reduction

through the relation (2.5). In contrast, ‖f‖MA−1
σ M is not. The following result com-

bines Lemma 5.3 and Theorem 3.1 to provide accuracy bounds.
Proposition 5.4. Let p be the purified vector (2.6b) given by the shift-invert

Lanczos reduction (2.2) with the Aσ-inner product, ρ its Rayleigh quotient, and r =
Ap−Mpρ. If Au = Muλ where λ is the closest eigenvalue to ρ, then∣∣∣∣λ− ρ

ρ

∣∣∣∣ ≤ 1
ρ

‖r‖M−1

‖p‖M
min

1,
1

min
λi 6=λ

|λi − ρ|
‖r‖M−1

‖p‖M

 (5.9a)

∣∣∣∣λ− ρ

λ− σ

∣∣∣∣ ≤ ‖r‖A−1
σ

‖p‖Aσ

min
(

1,

∣∣∣∣λgap − σ

λgap − ρ

∣∣∣∣ ‖r‖A−1
σ

‖p‖Aσ

)
(5.9b)

and

1
λn − λ1

‖r‖M−1

‖p‖M
≤ |sin∠M(p,u)| ≤ 1

min
λi 6=λ

|λi − λ|
‖r‖M−1

‖p‖M
(5.10a)

(λ1 − σ)(λn − σ)
(λn − λ1)(ρ− σ)

‖r‖A−1
σ

‖p‖Aσ

≤ |sin∠Aσ (p,u)| ≤
∣∣∣∣λgap − σ

λgap − ρ

∣∣∣∣ ‖r‖A−1
σ

‖p‖Aσ

(5.10b)

where λgap satisfies ∣∣∣∣ 1
λgap − σ

− 1
ρ− σ

∣∣∣∣ = min
λi 6=λ

∣∣∣∣ 1
λi − σ

− 1
ρ− σ

∣∣∣∣ .
Proof. The proof is similar to the one for Proposition 5.2.
The remarks following Proposition 5.2 remain valid. As soon as the convergence

criterion (2.7) is satisfied, we can introduce the tolerance ε in the bounds of Proposi-
tion 5.4, using the relations

‖f‖MA−1
σ M ≤ 1√

λ1 − σ
‖f‖M ≤ 1

λ1 − σ
‖f‖Aσ

.
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6. Practical shift-invert Lanczos iterations. Our analysis indicates that the
purified vector and its associated Rayleigh quotient are to be preferred over the Ritz
vector. Indeed, the purified vector p = Vs + fω/θ is richer than the Ritz vector
x = Vs. Moreover, regardless of whether we use the M- or Aσ-inner product to
maintain orthogonality of the Lanczos vectors, the Rayleigh quotient of the purified
vector is invariant as the mesh is refined.

The paper [1] shows that the tolerance for the eigensolver can be set at the level
of discretization error. When using large values for ε, say 10−3-10−5, purified vectors
may not be H-orthogonal to working precision when the purified residuals are of
comparable size because

∣∣pT Hq
∣∣ = ‖f‖2H

∣∣∣∣eT sp
θp

∣∣∣∣ ∣∣∣∣eT sq
θq

∣∣∣∣ ≤ ε2.

One easy solution is to perform, as post-processing, a Rayleigh-Ritz analysis for the
pencil (A,M) and the space spanned by V and f . When H is equal to M, the
construction of projected matrices is described in [6]. When H is equal to Aσ (σ <
λ1), the projected matrices are available as by-products of the Lanczos reduction.
This extra Rayleigh-Ritz step will restore the M-orthonormality and improve the
approximation of eigenpairs.

In this paper, we draw a distinction between the inner product used for orthogo-
nality of the Lanczos vectors and the inner product used for the error bounds. When
measuring the residual with the M−1-norm, the accuracy bounds are not uniform
with respect to the mesh size. On the other hand, when µ is smaller than λ1, using
the A−1

µ -norm for measuring residuals results in uniform bounds. To build a Lanczos
basis, the M-inner product is appropriate when M is well conditioned. Otherwise,
the Aσ-inner product is a viable alternative for maintaining the orthonormality of the
Lanczos vectors and can help a preconditioned iterative method (σ < λ1).
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